Targeting phospholamban by gene transfer in human heart failure.

نویسندگان

  • Federica del Monte
  • Sian E Harding
  • G William Dec
  • Judith K Gwathmey
  • Roger J Hajjar
چکیده

BACKGROUND Myocardial cells from failing human hearts are characterized by abnormal calcium handling, a negative force-frequency relationship, and decreased sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) activity. In this study, we tested whether contractile function can be improved by decreasing the inhibitory effects of phospholamban on SERCA2a with adenoviral gene transfer of antisense phospholamban (asPL). METHODS AND RESULTS Myocardial cells isolated from 9 patients with end-stage heart failure and 18 donor nonfailing hearts were infected with adenoviruses encoding for either the antisense of phospholamban (Ad.asPL), the SERCA2a gene (Ad.SERCA2a), or the reporter genes beta-galactosidase and green fluorescent protein (Ad.betagal-GFP). Adenoviral gene transfer with Ad.asPL decreased phospholamban expression over 48 hours, increasing the velocity of both contraction and relaxation. Compared with cardiomyocytes infected with Ad.asPL (n=13), human myocytes infected with Ad.betagal-GFP (n=8) had enhanced contraction velocity (20.3 +/- 3.9% versus 8.7 +/- 2.6% shortening/second; P<0.01) and relaxation velocity (26.0 +/- 6.2% versus 8.6 +/- 4.3% shortening/second; P<0.01). The improvement in contraction and relaxation velocities was comparable to cardiomyocytes infected with Ad.SERCA2a. Failing human cardiomyocytes had decreased contraction and Ca2+ release with increasing frequency (0.1 to 2 Hz). Phospholamban ablation restored the frequency response in the failing cardiomyocytes to normal; increasing frequency resulted in enhanced sarcoplasmic reticulum Ca2+ release and contraction. CONCLUSION These results show that gene transfer of asPL can improve the contractile function in failing human myocardium. Targeting phospholamban may provide therapeutic benefits in human heart failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome.

Heart disease remains the leading cause of death and disability in the Western world. Current therapies aim at treating the symptoms rather than the subcellular mechanisms, underlying the etiology and pathological remodeling in heart failure. A universal characteristic, contributing to the decreased contractile performance in human and experimental failing hearts, is impaired calcium sequestrat...

متن کامل

Identification of a Protein Phosphatase-1/Phospholamban Complex That Is Regulated by cAMP-Dependent Phosphorylation

In human and experimental heart failure, the activity of the type 1 phosphatase is significantly increased, associated with dephosphorylation of phospholamban, inhibition of the sarco(endo)plasmic reticulum Ca(2+) transport ATPase (SERCA2a) and depressed function. In the current study, we investigated the molecular mechanisms controlling protein phosphatase-1 activity. Using recombinant protein...

متن کامل

Gene transfer of a phospholamban-targeted antibody improves calcium handling and cardiac function in heart failure.

BACKGROUND Abnormalities of intracellular calcium handling are widely recognized as a common hallmark of heart failure in animal models and humans. Modifying the interaction of phospholamban (PLB) with the sarcoplasmic reticulum ATPase (SERCA) by PLB mutants improves cardiac function but may also lead to heart failure. In this study we describe the in vivo effects of a new approach to modify th...

متن کامل

Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats.

Ablation or inhibition of phospholamban (PLN) has favorable effects in several genetic murine dilated cardiomyopathies, and we showed previously that a pseudophosphorylated form of PLN mutant (S16EPLN) successfully prevented progressive heart failure in cardiomyopathic hamsters. In this study, the effects of PLN inhibition were examined in rats with heart failure after myocardial infarction (MI...

متن کامل

A recombinant antibody increases cardiac contractility by mimicking phospholamban phosphorylation.

Many cardiovascular disease states end in progressive heart failure. Changes in intracellular calcium handling, including a reduced activity of the sarcoplasmic reticulum calcium pump (SERCA), contribute to this contractile dysfunction. As the regulatory protein phospholamban can inhibit the calcium pump, we evaluated it as a potential target to improve cardiac function. In this study, we descr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 105 8  شماره 

صفحات  -

تاریخ انتشار 2002